Returns the probability of a user being a lead based on their interaction with the service/product and their own attributes (e.g. income, assets, credit score, etc.). Note that the inputs to this method, wherever applicable, should be the column names in the dataset mapped to the column mappings in our system (e.g. column 'user_id' mapped to mapping 'LEAD_ID' in our system).
Arguments:
REQUIRED
KEY
TYPE
DESCRIPTION
Yes
deploymentToken
str
The deployment token to authenticate access to created deployments. This token is only authorized to predict on deployments in this project, so it is safe to embed this model inside of an application or website.
Yes
deploymentId
str
The unique identifier to a deployment created under the project.
Yes
queryData
dict
A dictionary containing user attributes and/or user's interaction data with the product/service (e.g. number of clicks, items in cart, etc.).
No
explainPredictions
bool
Will explain predictions for leads
No
explainerType
str
Type of explainer to use for explanations
Note: The arguments for the API methods follow camelCase but for Python SDK underscore_case is followed.
Response:
KEY
TYPE
DESCRIPTION
success
Boolean
true if the call succeeded, false if there was an error