Once your model is trained, you must deploy the model on Abacus.AI platform to generate predictions. You can use the prediction dashboard to generate the predictions from the trained model. In this section the underlying prediction API and all other additional prediction API methods are discussed for the use case in consideration:
Returns a list of items with personalized promotions for a given user under the specified project deployment. Note that the inputs to this method, wherever applicable, should be the column names in the dataset mapped to the column mappings in our system (e.g. column 'item_code' mapped to mapping 'ITEM_ID' in our system).
REQUIRED | KEY | TYPE | DESCRIPTION |
---|---|---|---|
Yes | deploymentToken | str | The deployment token to authenticate access to created deployments. This token is only authorized to predict on deployments in this project, so it is safe to embed this model in an application or website. |
Yes | deploymentId | str | The unique identifier to a deployment created under the project. |
Yes | queryData | dict | This should be a dictionary with two key-value pairs. The first pair represents a 'Key' where the column name (e.g. a column with name 'user_id' in the dataset) mapped to the column mapping USER_ID uniquely identifies the user against whom a prediction is made and a 'Value' which is the identifier value for that user. The second pair will have a 'Key' which will be the name of the column name (e.g. movie_name) mapped to ITEM_ID (unique item identifier) and a 'Value' which will be a list of identifiers that uniquely identifies those items. |
No | preserveRanks | list | List of dictionaries of format {"column": "col0", "values": ["value0, value1"]}, where the ranks of items in query_data is preserved for all the items in "col0" with values, "value0" and "value1". This option is useful when the desired items are being recommended in the desired order and the ranks for those items need to be kept unchanged during recommendation generation. |
No | preserveUnknownItems | bool | If true, any items that are unknown to the model, will not be reranked, and the original position in the query will be preserved. |
No | scalingFactors | list | It allows you to bias the model towards certain items. The input to this argument is a list of dictionaries where the format of each dictionary is as follows: {"column": "col0", "values": ["value0", "value1"], "factor": 1.1}. The key, "column" takes the name of the column, "col0"; the key, "values" takes the list of items, "["value0", "value1"]" in reference to which the model recommendations need to be biased; and the key, "factor" takes the factor by which the item scores are adjusted. Let's take an example where the input to scaling_factors is [{"column": "VehicleType", "values": ["SUV", "Sedan"], "factor": 1.4}]. After we apply the model to get item probabilities, for every SUV and Sedan in the list, we will multiply the respective probability by 1.1 before sorting. This is particularly useful if there's a type of item that might be less popular but you want to promote it or there's an item that always comes up and you want to demote it. |
KEY | TYPE | DESCRIPTION |
---|---|---|
success | Boolean | true if the call succeeded, false if there was an error |
PersonalizedRankingsPrediction |
TYPE | WHEN |
---|---|
DataNotFoundError |
|